

On the number of minimum dominating sets and total dominating sets in forests

Jan Petr

(joint work with Julien Portier and Leo Versteegen)

PCC 2023

Dominating sets and total dominating sets

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:

$$\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$$

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$
- The *domination number of G* is
 $\gamma = \gamma(G) = \min\{|D| : D \text{ is a dominating set for } G\}$

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$
- The *domination number of G* is
 $\gamma = \gamma(G) = \min\{|D| : D \text{ is a dominating set for } G\}$
- $\Gamma = \Gamma(G) = \{D : D \text{ is a dominating set for } G \text{ of size } \gamma\}$

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$
- The *domination number of G* is
 $\gamma = \gamma(G) = \min\{|D| : D \text{ is a dominating set for } G\}$
- $\Gamma = \Gamma(G) = \{D : D \text{ is a dominating set for } G \text{ of size } \gamma\}$
- $D_t \subset V(G)$ is a *total dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D_t : v \in N(u))$

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:

$$\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$$

- The *domination number of G* is

$$\gamma = \gamma(G) = \min\{|D| : D \text{ is a dominating set for } G\}$$

- $\Gamma = \Gamma(G) = \{D : D \text{ is a dominating set for } G \text{ of size } \gamma\}$

- $D_t \subset V(G)$ is a *total dominating set for G* if:

$$\forall v \in V(G) : (\exists u \in D_t : v \in N(u))$$

- The *total domination number of G* is

$$\gamma_t = \gamma_t(G) = \min\{|D_t| : D_t \text{ is a total dominating set for } G\}$$

Dominating sets and total dominating sets

- $D \subset V(G)$ is a *dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D : v \in N(u)) \vee (v \in D)$
- The *domination number of G* is
 $\gamma = \gamma(G) = \min\{|D| : D \text{ is a dominating set for } G\}$
- $\Gamma = \Gamma(G) = \{D : D \text{ is a dominating set for } G \text{ of size } \gamma\}$
- $D_t \subset V(G)$ is a *total dominating set for G* if:
 $\forall v \in V(G) : (\exists u \in D_t : v \in N(u))$
- The *total domination number of G* is
 $\gamma_t = \gamma_t(G) = \min\{|D_t| : D_t \text{ is a total dominating set for } G\}$
- $\Gamma_t = \Gamma_t(G) = \{D_t : D_t \text{ is a total dominating set for } G \text{ of size } \gamma_t\}$

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?
- ▶ Bień, 2017: No, it can be $18^{\gamma/4} \approx 2.060^\gamma$.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?
- ▶ Bień, 2017: No, it can be $18^{\gamma/4} \approx 2.060^\gamma$.
- ▶ Edwards, MacGillivray, Nasserasr: *Reconfiguring Minimum Dominating Sets: The γ -Graph of a Tree*, 2018

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?
- ▶ Bień, 2017: No, it can be $18^{\gamma/4} \approx 2.060^\gamma$.
- ▶ Edwards, MacGillivray, Nasserasr: *Reconfiguring Minimum Dominating Sets: The γ -Graph of a Tree*, 2018
- ▶ Alvarado, Dantas, Mohr, Rautenbach: *On the maximum number of minimum dominating sets in forests*, 2019

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?
- ▶ Bień, 2017: No, it can be $18^{\gamma/4} \approx 2.060^\gamma$.
- ▶ Edwards, MacGillivray, Nasserasr: *Reconfiguring Minimum Dominating Sets: The γ -Graph of a Tree*, 2018
- ▶ Alvarado, Dantas, Mohr, Rautenbach: *On the maximum number of minimum dominating sets in forests*, 2019
- ▶ **Theorem (EMN):** $\Gamma(F) \leq ((1 + \sqrt{13})/2)^\gamma \approx 2.303^\gamma$ for every forest F .

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ Fricke, Hedetniemi, Hedetniemi, Hutson: *γ -graphs of graphs*, 2011
- ▶ **Question (FHHH):** Is $\Gamma(T) \leq 2^\gamma$ for any tree T ?
- ▶ Bień, 2017: No, it can be $18^{\gamma/4} \approx 2.060^\gamma$.
- ▶ Edwards, MacGillivray, Nasserasr: *Reconfiguring Minimum Dominating Sets: The γ -Graph of a Tree*, 2018
- ▶ Alvarado, Dantas, Mohr, Rautenbach: *On the maximum number of minimum dominating sets in forests*, 2019
- ▶ **Theorem (EMN):** $\Gamma(F) \leq ((1 + \sqrt{13})/2)^\gamma \approx 2.303^\gamma$ for every forest F .
- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf
- ▶ v is a *strong support vertex* if it adjacent to at least 2 leaves

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf
- ▶ v is a *strong support vertex* if it adjacent to at least 2 leaves

Proof idea

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with **domination number** γ and at least s strong support vertices.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf
- ▶ v is a *strong support vertex* if it adjacent to at least 2 leaves

Proof idea

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with **domination number** γ and at least s strong support vertices.
- ▶ Setting $\beta = \sqrt{5}$ and $\alpha = \frac{\beta}{\beta-1}$, we want to show $f(\gamma, s) \leq \alpha^s \beta^{\gamma-s}$.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf
- ▶ v is a *strong support vertex* if it adjacent to at least 2 leaves

Proof idea

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with **domination number** γ and at least s strong support vertices.
- ▶ Setting $\beta = \sqrt{5}$ and $\alpha = \frac{\beta}{\beta-1}$, we want to show $f(\gamma, s) \leq \alpha^s \beta^{\gamma-s}$.
- ▶ For the sake of contradiction, suppose γ, s are such that $f(\gamma, s) > \alpha^s \beta^{\gamma-s}$ and γ is as small as possible.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- ▶ **Theorem (PPV):** $\Gamma(F) \leq 5^{\gamma/2} \approx 2.236^\gamma$ for every forest F .
- ▶ v is a *support vertex* if it adjacent to a leaf
- ▶ v is a *strong support vertex* if it adjacent to at least 2 leaves

Proof idea

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with **domination number** γ and at least s strong support vertices.
- ▶ Setting $\beta = \sqrt{5}$ and $\alpha = \frac{\beta}{\beta-1}$, we want to show $f(\gamma, s) \leq \alpha^s \beta^{\gamma-s}$.
- ▶ For the sake of contradiction, suppose γ, s are such that $f(\gamma, s) > \alpha^s \beta^{\gamma-s}$ and γ is as small as possible.
- ▶ We look at structure of a forest F with $\Gamma(F) = f(\gamma, s)$ ‘near its ends’.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

Proof idea – example

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with domination number γ and at least s strong support vertices.
- ▶ $\beta = \sqrt{5}$, $\alpha = \frac{\beta}{\beta-1}$, we want to show $f(\gamma, s) \leq \alpha^s \beta^{\gamma-s}$.
- ▶ Assuming $f(\gamma, s) > \alpha^s \beta^{\gamma-s}$, γ smallest possible, $\Gamma(F) = f(\gamma, s)$.
- ▶ **Claim:** A support vertex $v \in V(F)$ with at most one non-leaf neighbour w is not a strong support vertex.

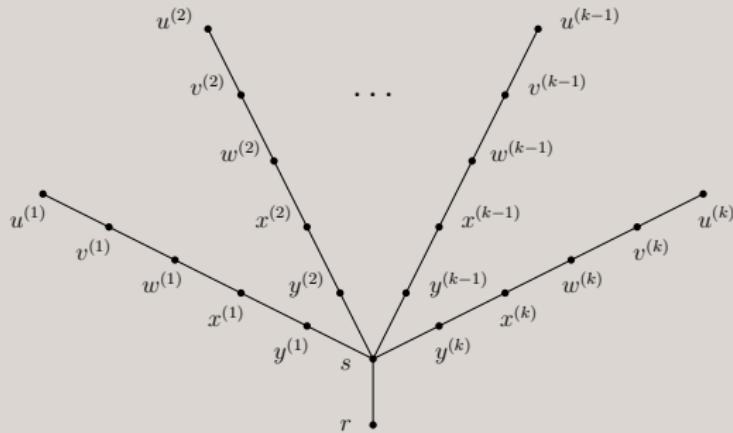
What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

Proof idea – example

- ▶ Let $f(\gamma, s)$ be the maximum number of **minimum** dominating sets among all **forests** with domination number γ and at least s strong support vertices.
- ▶ $\beta = \sqrt{5}$, $\alpha = \frac{\beta}{\beta-1}$, we want to show $f(\gamma, s) \leq \alpha^s \beta^{\gamma-s}$.
- ▶ Assuming $f(\gamma, s) > \alpha^s \beta^{\gamma-s}$, γ smallest possible,
 $\Gamma(F) = f(\gamma, s)$.
- ▶ **Claim:** A support vertex $v \in V(F)$ with at most one non-leaf neighbour w is not a strong support vertex.
- ▶ Case 1: w is a strong support vertex.
 $\Gamma(F) \leq f(\gamma-1, s-1) \leq \alpha^{s-1} \beta^{\gamma-s} < \alpha^s \beta^{\gamma-s}$.
- ▶ Case 2: w is not a strong support vertex. $\Gamma(F) \leq f(\gamma-1, s-1) + f(\gamma-1, s) \leq \alpha^s \beta^{\gamma-s} (\alpha^{-1} + \beta^{-1}) = \alpha^s \beta^{\gamma-s}$.

What is the maximum number of **minimum** dominating sets a **forest** can have in terms of γ ?

- **Theorem (PPV):** For every positive integer γ , there exists a tree with domination number γ that has more than $\frac{2}{5}\sqrt{5}^\gamma$ minimum dominating sets.



What is the maximum number of **minimal** dominating sets a **forest** can have in terms of **n** ?

What is the maximum number of **minimal** dominating sets a **forest** can have in terms of **n** ?

- Rote: *Minimal Dominating Sets in a Tree: Counting, Enumeration, and Extremal Results*, 2019

What is the maximum number of **minimal** dominating sets a **forest** can have in terms of **n** ?

- ▶ Rote: *Minimal Dominating Sets in a Tree: Counting, Enumeration, and Extremal Results*, 2019
- ▶ **Theorem (R):** Let $\lambda = \sqrt[13]{95} \approx 1.419$.
 - (1) A tree with n vertices has at most $2\lambda^{n-2} < 0.993 \cdot \lambda^n$ minimal dominating sets.
 - (2) For every n , there is a tree with at least $0.650 \cdot \lambda^n$ minimal dominating sets.

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t ?

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t ?

unbounded

What is the maximum number of **minimum total** dominating sets a **forest** can have in terms of γ_t, n ?

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t, n ?

- ▶ Henning, Mohr, Rautenbach: *On the maximum number of minimum total dominating sets in forests*, 2019

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t, n ?

- ▶ Henning, Mohr, Rautenbach: *On the maximum number of minimum total dominating sets in forests*, 2019
- ▶ **Conjecture (HMR):** If a tree T has order n at least 2 and total domination number γ_t , then $\Gamma_t(T) \leq \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$.

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t, n ?

- ▶ Henning, Mohr, Rautenbach: *On the maximum number of minimum total dominating sets in forests*, 2019
- ▶ **Conjecture (HMR):** If a tree T has order n at least 2 and total domination number γ_t , then $\Gamma_t(T) \leq \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$.
- ▶ **Theorem (HMR):** If a forest F has order n , no isolated vertex, and total domination number γ_t , then $\Gamma_t(T) \leq (8\sqrt{e})^{\gamma_t} \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)$.

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of γ_t, n ?

- ▶ Henning, Mohr, Rautenbach: *On the maximum number of minimum total dominating sets in forests*, 2019
- ▶ **Conjecture (HMR):** If a tree T has order n at least 2 and total domination number γ_t , then $\Gamma_t(T) \leq \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$.
- ▶ **Theorem (HMR):** If a forest F has order n , no isolated vertex, and total domination number γ_t , then $\Gamma_t(T) \leq (8\sqrt{e})^{\gamma_t} \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)$.
- ▶ **Theorem (PPV):** There exists $c > 1$ and trees T with arbitrarily large total domination number γ_t and order n with $\Gamma_t(T) \geq c^{\gamma_t} \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}}\right)^{\frac{\gamma_t}{2}}$.

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of **n** ?

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of **n** ?

- **Theorem (HMR):** If a forest F has order n and no isolated vertex, then $\Gamma_t(F) \leq 1.487^n$.

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of **n** ?

- ▶ **Theorem (HMR):** If a forest F has order n and no isolated vertex, then $\Gamma_t(F) \leq 1.487^n$.
- ▶ Taletskii: *On the number of minimum total dominating sets in trees*, 2023

What is the maximum number of **minimum total dominating sets** a **forest** can have in terms of **n** ?

- ▶ **Theorem (HMR):** If a forest F has order n and no isolated vertex, then $\Gamma_t(F) \leq 1.487^n$.
- ▶ Taletskii: *On the number of minimum total dominating sets in trees*, 2023
- ▶ **Theorem (T):** If a tree has order n at least 2, then $\Gamma_t(F) \leq \sqrt{2}^n \approx 1.414^n$.

What is the maximum number of minimal/minimum dominating sets a graph can have in terms of n ?

What is the maximum number of minimal/minimum dominating sets a graph can have in terms of n ?

- Fomin, Grandoni, Pyatkin, Stepanov: *Combinatorial Bounds via Measure and Conquer: Bounding Minimal Dominating Sets and Applications*, 2008

What is the maximum number of minimal/minimum dominating sets a graph can have in terms of n ?

- ▶ Fomin, Grandoni, Pyatkin, Stepanov: *Combinatorial Bounds via Measure and Conquer: Bounding Minimal Dominating Sets and Applications*, 2008
- ▶ **Theorem (FGPS):** Every graph on n vertices contains at most 1.716^n minimal dominating sets.

What is the maximum number of minimal/minimum dominating sets a graph can have in terms of n ?

- ▶ Fomin, Grandoni, Pyatkin, Stepanov: *Combinatorial Bounds via Measure and Conquer: Bounding Minimal Dominating Sets and Applications*, 2008
- ▶ **Theorem (FGPS):** Every graph on n vertices contains at most 1.716^n minimal dominating sets.
- ▶ Kratsch: There are graphs containing $15^{n/6} \approx 1.570^n$ minimal dominating sets.