

Temperate families

Jan Petr
University of Passau

based on joint work with Pavel Turek

What is a temperate family?

What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

Examples of t -temperate families:

What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

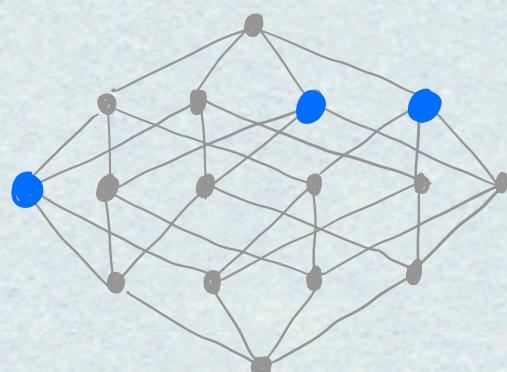
For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

Examples of t -temperate families:
antichains ($t \geq 0$)



What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

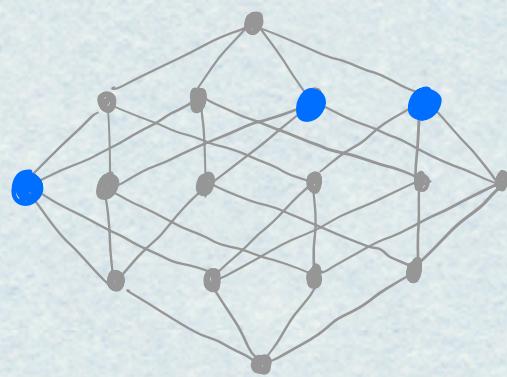
For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

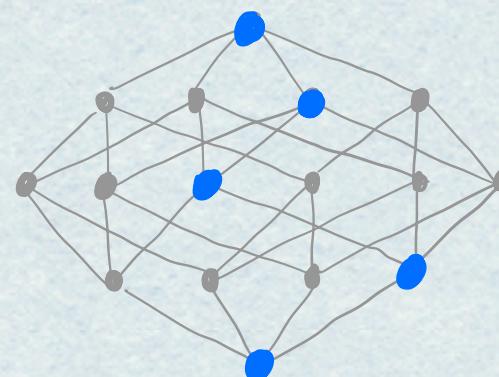
$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

Examples of t -temperate families:
antichains ($t \geq 0$)



chains ($t \geq 1$)



What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

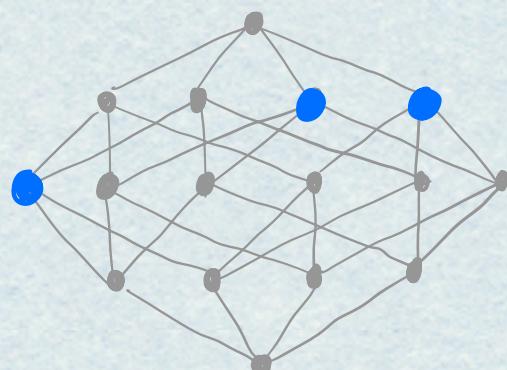
For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

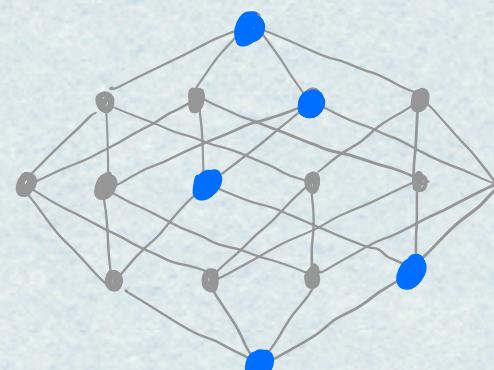
$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

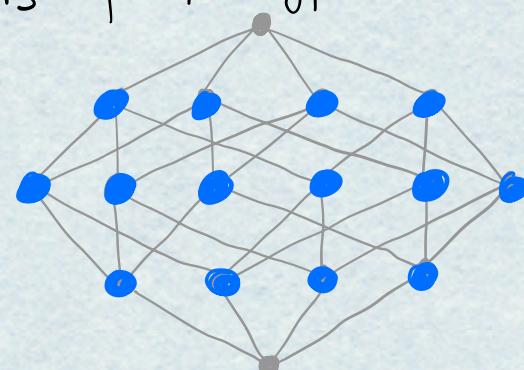
Examples of t -temperate families:
antichains ($t \geq 0$)



chains ($t \geq 1$)



union of $s+1$ consecutive
layers of the hypercube ($t \geq s$)



What is a temperate family?

Let $n, t \in \mathbb{Z}_{\geq 0}$ and $\mathcal{F} \subseteq \mathcal{P}([n])$.

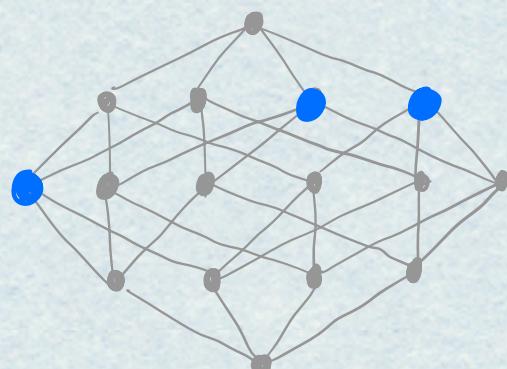
For $A \in \mathcal{F}$, denote $\mu_{\mathcal{F}}(A) = |\mathcal{F} \cap \mathcal{P}(A)|$.

We say that \mathcal{F} is a t -temperate family on $[n]$ if

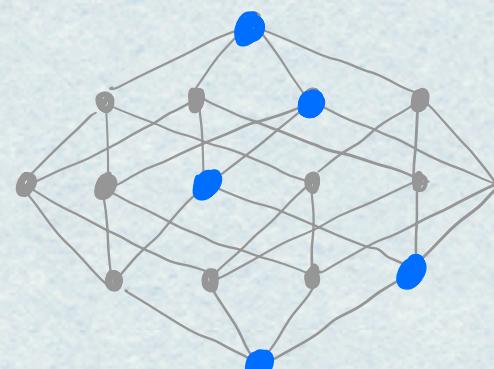
$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

A family \mathcal{F} on $[n]$ is called temperate (on $[n]$) if it is 1-temperate,
i.e. if $\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq |A| + 1$.

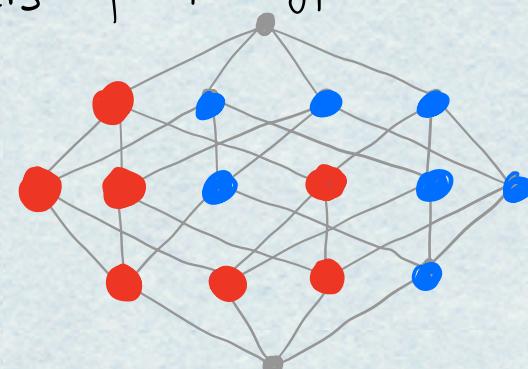
Examples of t -temperate families:
antichains ($t \geq 0$)



chains ($t \geq 1$)



union of $s+1$ consecutive
layers of the hypercube ($t \geq s$)



Initial questions

(We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

Question 1.

Question 2.

Initial questions

(We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

Question 1. What is the maximum size of a t -temperate family on $[n]^2$?

Question 2.

Initial questions

(We say that \mathcal{F} is a t -temperate family on $[n]$ if

$$\forall A \in \mathcal{F} : \mu_{\mathcal{F}}(A) \leq \sum_{j=0}^t \binom{|A|}{j}.$$

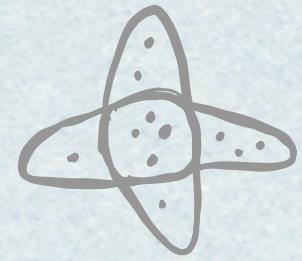
Question 1. What is the maximum size of
a t -temperate family on $[n]^2$?

Question 2. What is the maximum size of
an intersecting t -temperate family on $[n]^2$?

Motivation

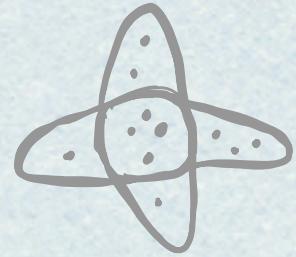
Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which
is an r -sunflower for some $r \geq 3$.



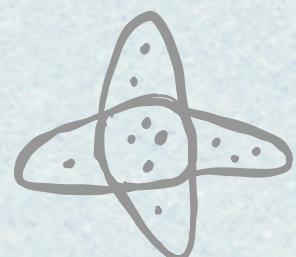
Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which
is an r -sunflower for some $r \geq 3$.



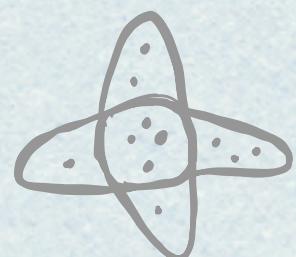
Let $f(n)$ be the maximum size of a sunflower-free family on $[n]$.

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a sunflower-free family on $[n]$.
Q: What is the value of $\Phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which is an r -sunflower for some $r \geq 3$.

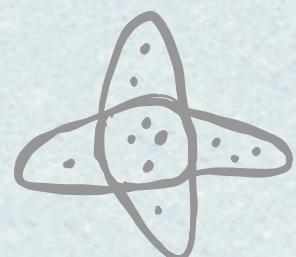
Let $f(n)$ be the maximum size of a sunflower-free family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

Motivation

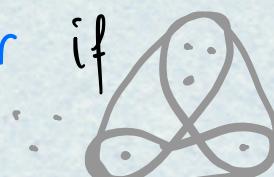
A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a sunflower-free family on $[n]$.

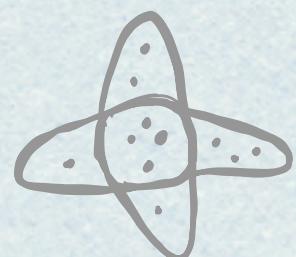
Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an even-sunflower if each $i \in [n]$ lies in an even number of sets. 

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if 
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

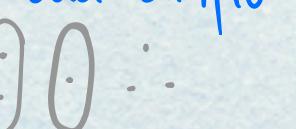
Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

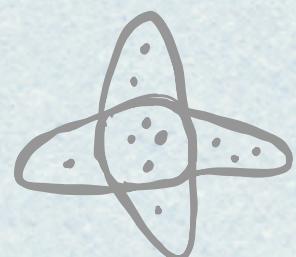
Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets.

A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, or in **none**. 

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an r -sunflower if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A sunflower is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a sunflower-free family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

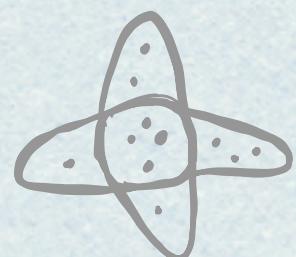
Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an even-sunflower if each $i \in [n]$ lies in an even number of sets.

A non-empty family on $[n]$ of at least two non-empty sets is an odd-sunflower if each $i \in [n]$ lies in an odd number of sets, or in none.

Let $f_{\text{even}}(n)$ be the maximum size of an even-sunflower-free family on $[n]$.
 $f_{\text{odd}}(n)$ odd-sunflower-free

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if 
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets.

A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, or in **none**. 

Let $f_{\text{even}}(n)$ be the maximum size of an **even-sunflower-free** family on $[n]$.
 $f_{\text{odd}}(n)$ **odd-sunflower-free**

"**Odd-town**" $\Rightarrow f_{\text{even}}(n) = n$.

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if 
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets.

A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, or in **none**. 

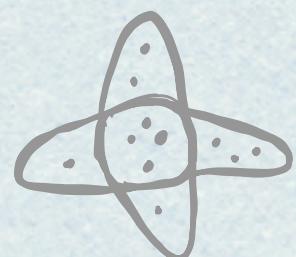
Let $f_{\text{even}}(n)$ be the maximum size of an **even-sunflower-free** family on $[n]$.

$f_{\text{odd}}(n)$

odd-sunflower-free

"**Odd-town**" $\Rightarrow f_{\text{even}}(n) = n$. Frankl, Pach, Pálvölgyi, 2024: $\lim_{n \rightarrow \infty} f_{\text{odd}}(n)^{1/n} > 1.502$.

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets.

A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, **or in none**.

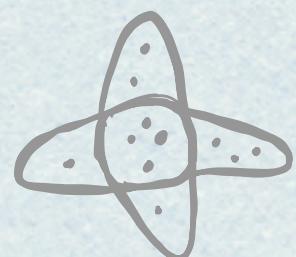
Let $f_{\text{even}}(n)$ be the maximum size of an **even-sunflower-free** family on $[n]$.
 $f_{\text{odd}}(n)$ **odd-sunflower-free**

"Odd-town" $\Rightarrow f_{\text{even}}(n) = n$.

Frankl, Pach, Pálvölgyi, 2024: $\lim_{n \rightarrow \infty} f_{\text{odd}}(n)^{1/n} > 1.502$.

Observations: (1)
(2)

Motivation

A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if 
 $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets.

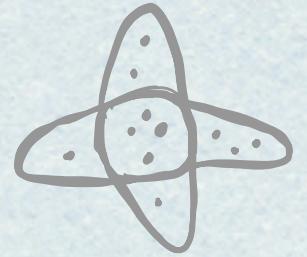
A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, **or in none**.

Let $f_{\text{even}}(n)$ be the maximum size of an **even-sunflower-free** family on $[n]$.
 $f_{\text{odd}}(n)$ **odd-sunflower-free**

"**Odd-town**" $\Rightarrow f_{\text{even}}(n) = n$. Frankl, Pach, Pálvölgyi, 2024: $\lim_{n \rightarrow \infty} f_{\text{odd}}(n)^{1/n} > 1.502$.

Observations: (1) Odd-sunflower-free families are temperate.
(2)

Motivation

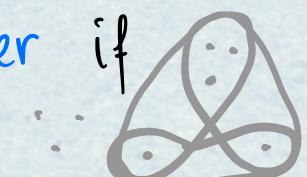
A family of $r \geq 3$ sets S_1, \dots, S_r is an **r -sunflower** if  $\forall i \neq j \quad S_i \cap S_j = \bigcap_{k=1}^r S_k$. A **sunflower** is a family which is an r -sunflower for some $r \geq 3$.

Let $f(n)$ be the maximum size of a **sunflower-free** family on $[n]$.

Q: What is the value of $\phi = \lim_{n \rightarrow \infty} f(n)^{1/n}$? (Note: the limit exists)

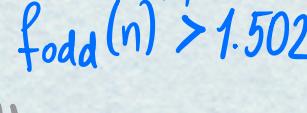
Deuber, Erdős, Gunderson, Kostochka, Meyer, 1997: $\phi > 1.551$

Naslund, Sawin, 2017: $\phi < 1.890$.

A non-empty family on $[n]$ of non-empty sets is an **even-sunflower** if each $i \in [n]$ lies in an **even** number of sets. 

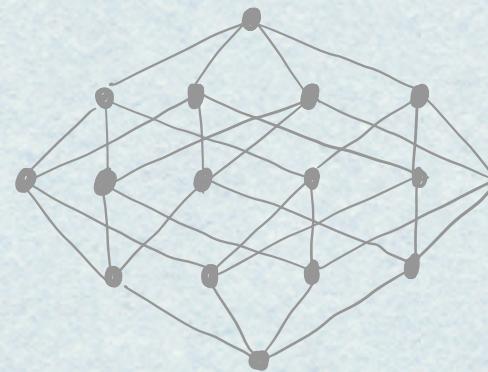
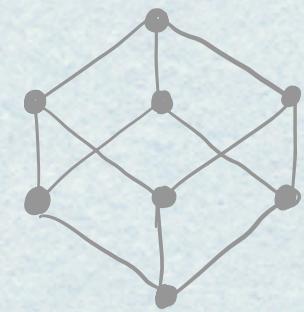
A non-empty family on $[n]$ of **at least two** non-empty sets is an **odd-sunflower** if each $i \in [n]$ lies in an **odd** number of sets, **or in none**.

Let $f_{\text{even}}(n)$ be the maximum size of an **even-sunflower-free** family on $[n]$.
 $f_{\text{odd}}(n)$ **odd-sunflower-free**

"**Odd-town**" $\Rightarrow f_{\text{even}}(n) = n$. Frankl, Pach, Pálvölgyi, 2024: $\lim_{n \rightarrow \infty} f_{\text{odd}}(n)^{1/n} > 1.502$. 

Observations: (1) Odd-sunflower-free families are temperate.
(2) Odd-sunflower-free families are intersecting.

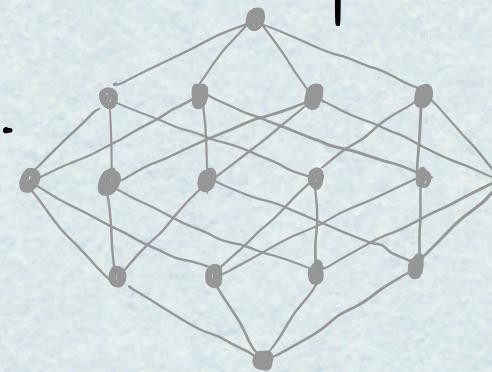
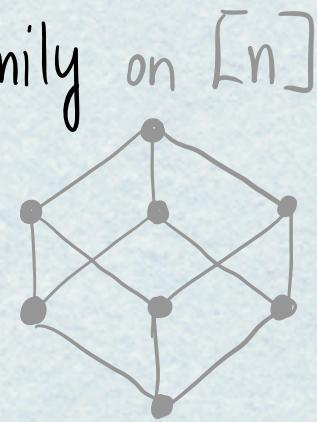
Answer to Question 1



Answer to Question 1

Thm 1: Let $t \leq n$ be non-negative integers.

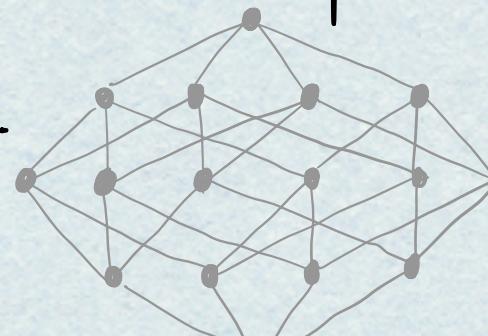
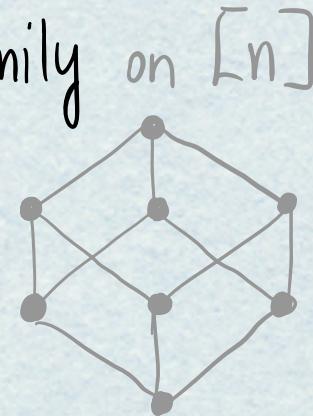
The maximum size of a t -temperate family on $[n]$
is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.



Answer to Question 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$
is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.



Thm 2: Let $t \leq n$ be non-negative integers.

(a)

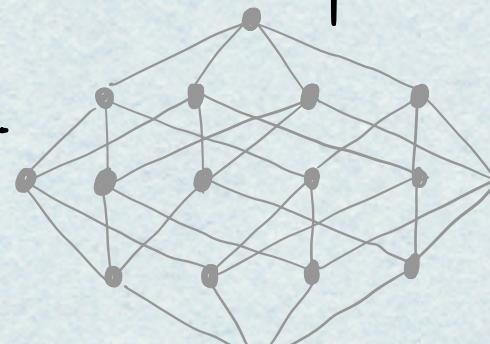
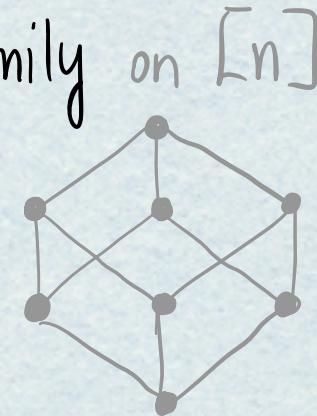
(b)

(c)

Answer to Question 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.



Thm 2: Let $t \leq n$ be non-negative integers.

(a) If $t \equiv n \pmod{2}$, the only t -temperate family of maximal size is $\bigcup_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

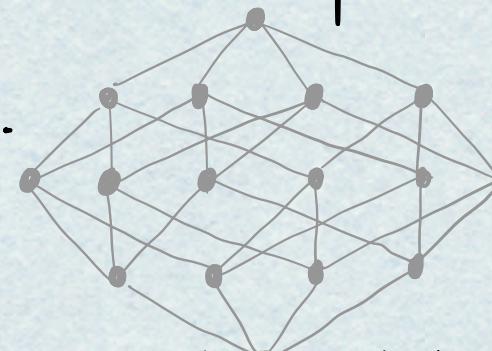
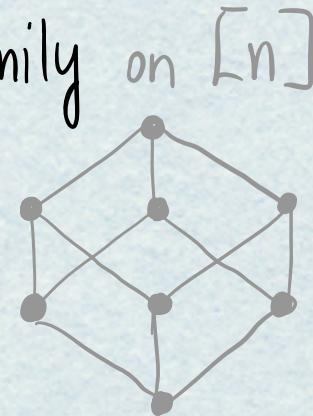
(b)

(c)

Answer to Question 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.



Thm 2: Let $t \leq n$ be non-negative integers.

(a) If $t \equiv n \pmod{2}$, the only t -temperate family of maximal size is $\bigcup_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

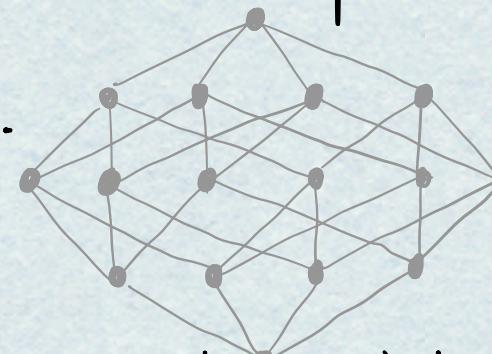
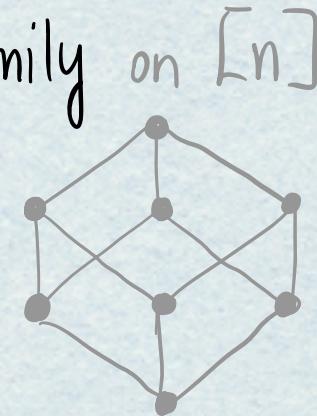
(b) If $t = n-1$, any family of size $2^n - 1$ is a t -temperate family of maximal size.

(c)

Answer to Question 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.



Thm 2: Let $t \leq n$ be non-negative integers.

(a) If $t \equiv n \pmod{2}$, the only t -temperate family of maximal size is $\bigcup_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

(b) If $t = n-1$, any family of size $2^n - 1$ is a t -temperate family of maximal size.

(c) If $t \not\equiv n \pmod{2}$ and $t < n-1$, there are two t -temperate families of maximal size: $\bigcup_{j=0}^t \left(\left\lfloor \frac{n}{2} \right\rfloor + j \right)$ and $\bigcup_{j=0}^t \left(\left\lfloor \frac{n-t-1}{2} \right\rfloor + j \right)$.

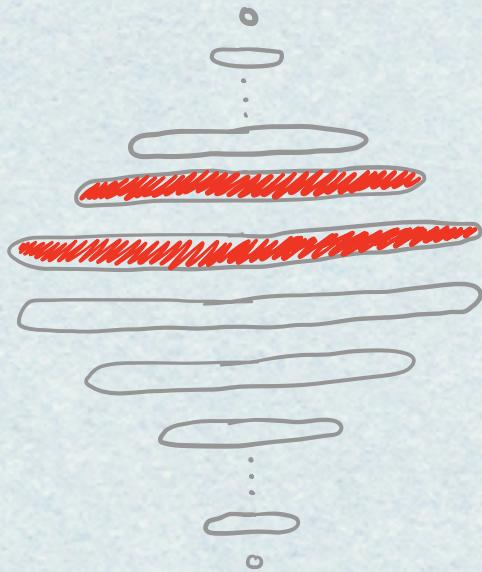
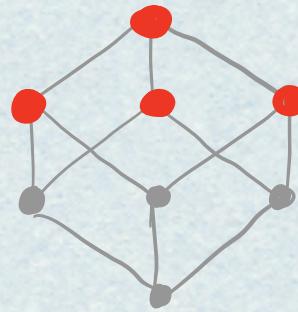
Partial answer to Question 2

Partial answer to Question 2

Thm 3 : The maximum size of an **intersecting** temperate family
on $[n]$ for **odd** $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

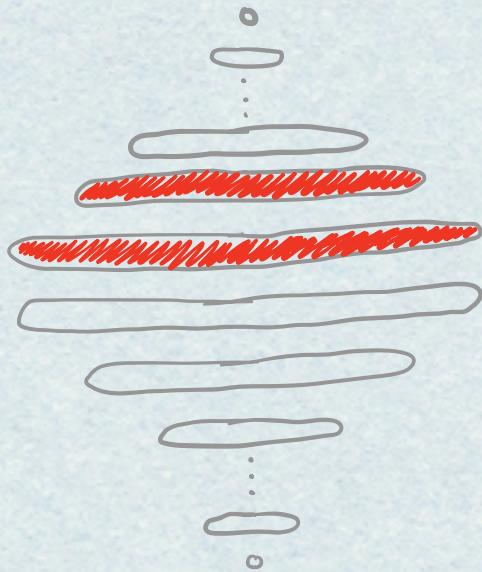
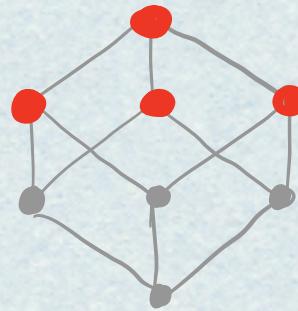
Partial answer to Question 2

Thm 3 : The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.



Partial answer to Question 2

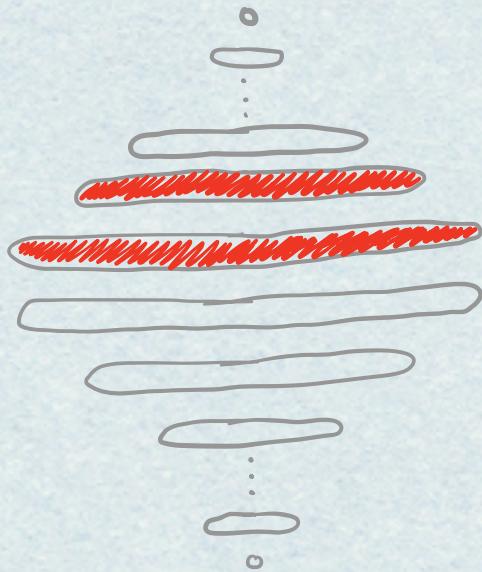
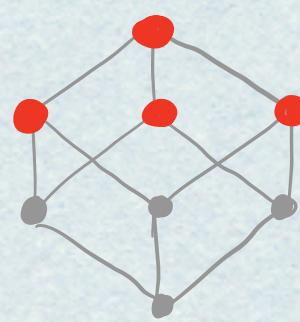
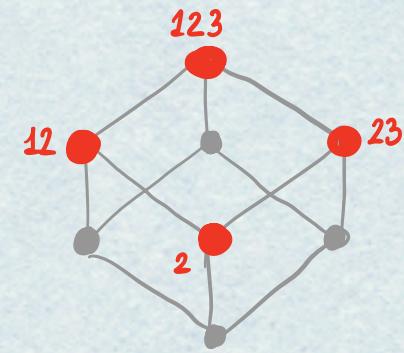
Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.



Thm 4: For odd $n=2k-1$ the unique intersecting temperate family on $[n]$ of maximal size is $\binom{[2k-1]}{k} \cup \binom{[2k-1]}{k+1}$ unless $n=3$, in which there are **three additional** such families: $\{A \in \mathcal{P}([3]): i \in A\}$, $i \in \{1, 2, 3\}$.

Partial answer to Question 2

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.



Thm 4: For odd $n=2k-1$ the unique intersecting temperate family on $[n]$ of maximal size is $\binom{[2k-1]}{k} \cup \binom{[2k-1]}{k+1}$ unless $n=3$, in which there are **three additional** such families: $\{A \in \mathcal{P}([3]): i \in A\}$, $i \in \{1, 2, 3\}$.

Intersecting temperate family on $[2k]$ of maximum size

Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Proposed extremal example: $\mathcal{L} \subseteq \mathcal{P}([2k])$ consisting of:

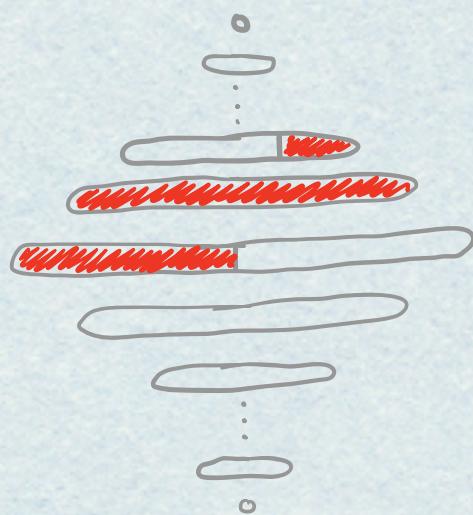
- all elements of $\binom{[2k]}{k}$ containing 1, and
- all elements of $\binom{[2k]}{k+1}$, and
- all elements of $\binom{[2k]}{k+2}$ not containing 1.

Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Proposed extremal example: $\mathcal{L} \subseteq \mathcal{P}([2k])$ consisting of:

- all elements of $\binom{[2k]}{k}$ containing 1, and
- all elements of $\binom{[2k]}{k+1}$, and
- all elements of $\binom{[2k]}{k+2}$ not containing 1.



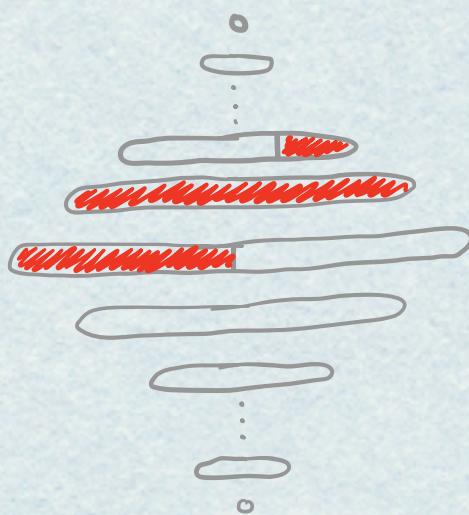
Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Proposed extremal example: $\mathcal{L} \subseteq \mathcal{P}([2k])$ consisting of:

"Lightning"

- all elements of $\binom{[2k]}{k}$ containing 1, and
- all elements of $\binom{[2k]}{k+1}$, and
- all elements of $\binom{[2k]}{k+2}$ not containing 1.



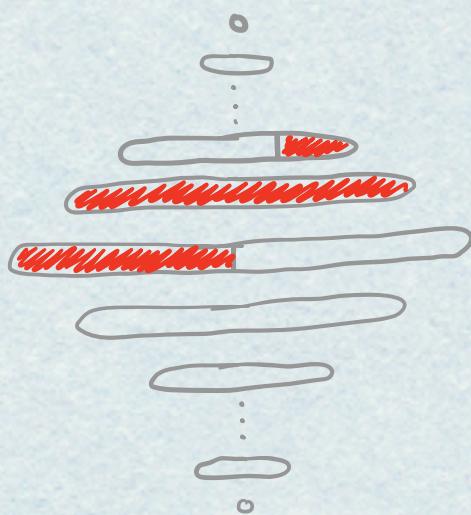
Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Proposed extremal example: $\mathcal{L} \subseteq \mathcal{P}([2k])$ consisting of:

"Lightning"

- all elements of $\binom{[2k]}{k}$ containing 1, and
- all elements of $\binom{[2k]}{k+1}$, and
- all elements of $\binom{[2k]}{k+2}$ not containing 1.



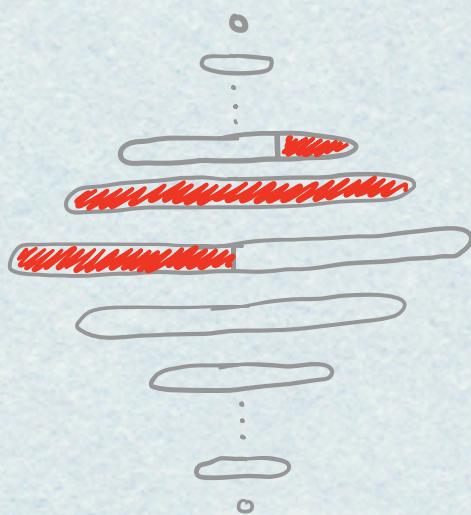
Intersecting temperate family on $[2k]$ of maximum size

Conjecture: The maximum size of an intersecting temperate family on $[n]$ for even $n=2k$ is $\frac{1}{2} \binom{2k}{k} + \binom{2k}{k+1} + \binom{2k-1}{k+2}$.

Proposed extremal example: $\mathcal{L} \subseteq \mathcal{P}([2k])$ consisting of:

"Lightning"

- all elements of $\binom{[2k]}{k}$ containing 1, and
- all elements of $\binom{[2k]}{k+1}$, and
- all elements of $\binom{[2k]}{k+2}$ not containing 1.



Proof of Thm 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right).$

Proof of Thm 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

For a family \mathcal{F} on $[n]$ and $A \in \mathcal{F}$ we define $w(A) = \binom{n}{|A|}$
and $w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$.

Proof of Thm 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

For a family \mathcal{F} on $[n]$ and $A \in \mathcal{F}$ we define $w(A) = \binom{n}{|A|}$
and $w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$.

Observation: Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.
Then $\mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Proof of Thm 1

Thm 1: Let $t \leq n$ be non-negative integers.

The maximum size of a t -temperate family on $[n]$ is $\sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right)$.

For a family \mathcal{F} on $[n]$ and $A \in \mathcal{F}$ we define $w(A) = \binom{n}{|A|}$
and $w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$.

Observation: Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.

Then $\mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

$$\begin{aligned} \text{Pf: } \mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] &= \sum_{i=0}^n w([i]) \cdot \mathbb{P}_{\mathcal{C}} (\mathcal{F}_i \cap \mathcal{C} \neq \emptyset) \\ &= \sum_{i=0}^n w([i]) \cdot \frac{|\mathcal{F}_i|}{\binom{n}{i}} \\ &= \sum_{i=0}^n |\mathcal{F}_i| = |\mathcal{F}|. \quad \square \end{aligned}$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation : Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.
Then $\mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation : Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.

Then $\mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Denote by \mathcal{F}^* the set of chain-maximal elements of \mathcal{F}

there is a maximal chain C on $[n]$ such that the element is maximal in $\mathcal{F} \cap C$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation : Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.

$$\text{Then } \mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|.$$

Denote by \mathcal{F}^* the set of **chain-maximal elements** of \mathcal{F}

there is a maximal chain C on $[n]$ such that the element is maximal in $\mathcal{F} \cap C$

$$|\mathcal{F}| = \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F})]$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation : Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.

$$\text{Then } \mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|.$$

Denote by \mathcal{F}^* the set of **chain-maximal elements** of \mathcal{F}

there is a maximal chain C on $[n]$ such that the element is maximal in $\mathcal{F} \cap C$

$$\begin{aligned} |\mathcal{F}| &= \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F})] && \text{maximal element of } \mathcal{F} \cap \mathcal{C} \\ &= \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_{\mathcal{C}} [\mathcal{C} \cap \mathcal{F} = \emptyset] \\ &\quad + \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}} [M(\mathcal{C}) = A] \end{aligned}$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation: Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random. Then $\mathbb{E}_{\mathcal{C}}[w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Denote by \mathcal{F}^* the set of chain-maximal elements of \mathcal{F}

$$\begin{aligned} |\mathcal{F}| &= \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F})] \\ &= \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_{\mathcal{C}}[\mathcal{C} \cap \mathcal{F} = \emptyset] \\ &\quad + \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A] \\ &= \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A] \end{aligned}$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation : Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random.
Then $\mathbb{E}_{\mathcal{C}} [w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Denote by \mathcal{F}^* the set of **chain-maximal elements** of \mathcal{F}
there is a maximal chain C on $[n]$ such that the element is maximal in $\mathcal{F} \cap C$

$$\begin{aligned} |\mathcal{F}| &= \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F})] && \text{maximal element of } \mathcal{F} \cap \mathcal{C} \\ &= \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_{\mathcal{C}} [\mathcal{C} \cap \mathcal{F} = \emptyset] \\ &\quad + \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}} [M(\mathcal{C}) = A] \\ &= \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}} [M(\mathcal{C}) = A] \\ &\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}} [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \end{aligned}$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation: Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random. Then $\mathbb{E}_{\mathcal{C}}[w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Denote by \mathcal{F}^* the set of **chain-maximal elements** of \mathcal{F}
there is a maximal chain C on $[n]$ such that the element is maximal in $\mathcal{F} \cap C$

$$\begin{aligned} |\mathcal{F}| &= \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F})] && \text{maximal element of } \mathcal{F} \cap \mathcal{C} \\ &= \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_{\mathcal{C}}[\mathcal{C} \cap \mathcal{F} = \emptyset] \\ &\quad + \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A] \\ &= \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A] \\ &\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \\ &= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap P(A)} w(B) \cdot \mathbb{P}_{\mathcal{C}}[B \in \mathcal{C} \mid M(\mathcal{C}) = A] \end{aligned}$$

Proof of Thm 1

$$w(A) = \binom{n}{|A|}, \quad w(\mathcal{F}) = \sum_{B \in \mathcal{F}} w(B)$$

Observation: Let \mathcal{F} be a family on $[n]$ and let \mathcal{C} be a random maximal chain on $[n]$ chosen uniformly at random. Then $\mathbb{E}_{\mathcal{C}}[w(\mathcal{F} \cap \mathcal{C})] = |\mathcal{F}|$.

Denote by \mathcal{F}^* the set of **chain-maximal elements** of \mathcal{F}

$$|\mathcal{F}| = \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F})]$$

$$= \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_{\mathcal{C}}[\mathcal{C} \cap \mathcal{F} = \emptyset] + \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A]$$

$$= \sum_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_{\mathcal{C}}[M(\mathcal{C}) = A]$$

$$\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_{\mathcal{C}}[w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap P(A)} w(B) \cdot \mathbb{P}_{\mathcal{C}}[B \in \mathcal{C} \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap P(A)} \binom{n}{|B|} / \binom{|A|}{|B|}$$

Proof of Thm 1

$$|\mathcal{F}| = \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F})]$$

$$= \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_e [\mathcal{C} \cap \mathcal{F} = \emptyset] + \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$= \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} w(B) \cdot \mathbb{P}_e [B \in \mathcal{C} \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} \binom{n}{|B|} / \binom{|A|}{|B|}$$

Proof of Thm 1

$$|\mathcal{F}| = \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F})]$$

$$= \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_e [\mathcal{C} \cap \mathcal{F} = \emptyset] + \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$= \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} w(B) \cdot \mathbb{P}_e [B \in \mathcal{C} \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} \underbrace{\binom{n}{|B|} / \binom{|A|}{|B|}}_{= \binom{m}{|A|} \binom{n-|B|}{m-|A|}} \quad \text{non-decreasing in } |B|$$

Proof of Thm 1

$$|\mathcal{F}| = \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F})]$$

$$= \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_e [\mathcal{C} \cap \mathcal{F} = \emptyset] + \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$= \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} w(B) \cdot \mathbb{P}_e [B \in \mathcal{C} \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} \underbrace{\binom{n}{|B|}}_{= \binom{m}{|A|}} / \underbrace{\binom{|A|}{|B|}}_{= \binom{m}{|A|} \binom{n-|B|}{m-|A|}} \quad \text{non-decreasing in } |B|$$

$$\leq \max_{A \in \mathcal{F}^*} \sum_{j=\max(0, |A|-t)}^{|A|} \binom{n}{j}$$

Proof of Thm 1

$$|\mathcal{F}| = \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F})]$$

$$= \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid \mathcal{C} \cap \mathcal{F} = \emptyset] \cdot \mathbb{P}_e [\mathcal{C} \cap \mathcal{F} = \emptyset] + \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$= \sum_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A] \cdot \mathbb{P}_e [M(\mathcal{C}) = A]$$

$$\leq \max_{A \in \mathcal{F}^*} \mathbb{E}_e [w(\mathcal{C} \cap \mathcal{F}) \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} w(B) \cdot \mathbb{P}_e [B \in \mathcal{C} \mid M(\mathcal{C}) = A]$$

$$= \max_{A \in \mathcal{F}^*} \sum_{B \in \mathcal{F} \cap \mathcal{P}(A)} \underbrace{\binom{n}{|B|}}_{= \binom{m}{|A|} \binom{m-|B|}{m-|A|}} / \binom{|A|}{|B|} \quad \text{non-decreasing in } |B|$$

$$\leq \max_{A \in \mathcal{F}^*} \sum_{j=\max(0, |A|-t)}^{|A|} \binom{n}{j}$$

$$\leq \sum_{j=0}^t \left(\left\lfloor \frac{n-t}{2} \right\rfloor + j \right) \quad \square$$

Proof of Thm 3

Thm 3 : The maximum size of an **intersecting** temperate family
on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Proof of Thm 3

Thm 3 : The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma : Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma: $2 \geq \mathbb{E}_{\mathcal{C}}[|\mathcal{C} \cap \mathcal{F}|]$

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma: $2 \geq \mathbb{E}_{\mathcal{C}} [|\mathcal{C} \cap \mathcal{F}|]$

$$= \sum_{i=0}^n \frac{|\mathcal{F}_i|}{\binom{n}{i}}$$

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma:

$$\begin{aligned} 2 &\geq \mathbb{E}_{\mathcal{C}} [|\mathcal{C} \cap \mathcal{F}|] \\ &= \sum_{i=0}^n \frac{|\mathcal{F}_i|}{\binom{n}{i}} \\ &\geq \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{1}{\binom{2k-1}{k+1}} \sum_{\substack{0 \leq i \leq n \\ i \neq k-1, k}} |\mathcal{F}_i| \end{aligned}$$

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma:

$$\begin{aligned} 2 &\geq \mathbb{E}_{\mathcal{C}} [|\mathcal{C} \cap \mathcal{F}|] \\ &= \sum_{i=0}^n \frac{|\mathcal{F}_i|}{\binom{n}{i}} \\ &\geq \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{1}{\binom{2k-1}{k+1}} \sum_{\substack{0 \leq i \leq n \\ i \neq k-1, k}} |\mathcal{F}_i| \\ &= \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{|\mathcal{F}| - (|\mathcal{F}_{k-1}| + |\mathcal{F}_k|)}{\binom{2k-1}{k+1}} \end{aligned}$$

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which does not contain the empty set, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma:

$$\begin{aligned} 2 &\geq \mathbb{E}_{\mathcal{C}}[|\mathcal{C} \cap \mathcal{F}|] \\ &= \sum_{i=0}^n \frac{|\mathcal{F}_i|}{\binom{n}{i}} \\ &\geq \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{1}{\binom{2k-1}{k+1}} \sum_{\substack{0 \leq i \leq n \\ i \neq k-1, k}} |\mathcal{F}_i| \\ &= \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{|\mathcal{F}| - (|\mathcal{F}_{k-1}| + |\mathcal{F}_k|)}{\binom{2k-1}{k+1}} \end{aligned}$$

After rearranging: $|\mathcal{F}| \leq 2 \binom{2k-1}{k} + (|\mathcal{F}_{k-1}| + |\mathcal{F}_k|) \left(1 - \frac{\binom{2k-1}{k+1}}{\binom{2k-1}{k}}\right)$

Proof of Thm 3

Thm 3: The maximum size of an **intersecting** temperate family on $[n]$ for odd $n=2k-1$ is $\binom{2k-1}{k} + \binom{2k-1}{k+1}$.

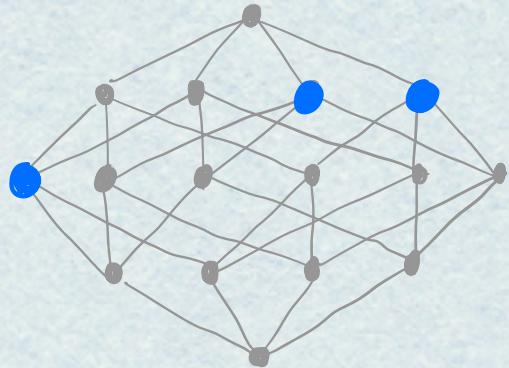
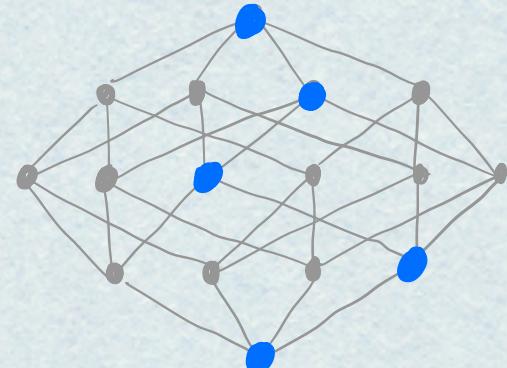
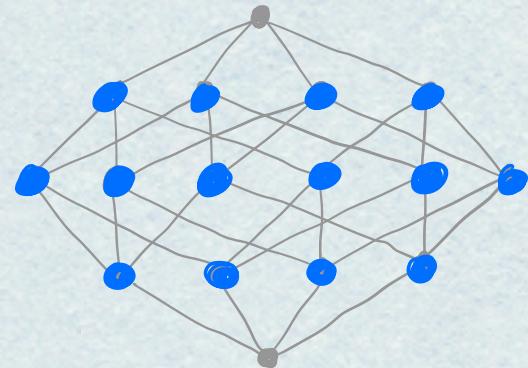
Lemma: Let \mathcal{C} be a maximal chain on $[n]$ chosen uniformly at random. If \mathcal{F} is a temperate family on $[n]$ which **does not contain the empty set**, then $\mathbb{E}[|\mathcal{C} \cap \mathcal{F}|] \leq 2$.

Applying Lemma:

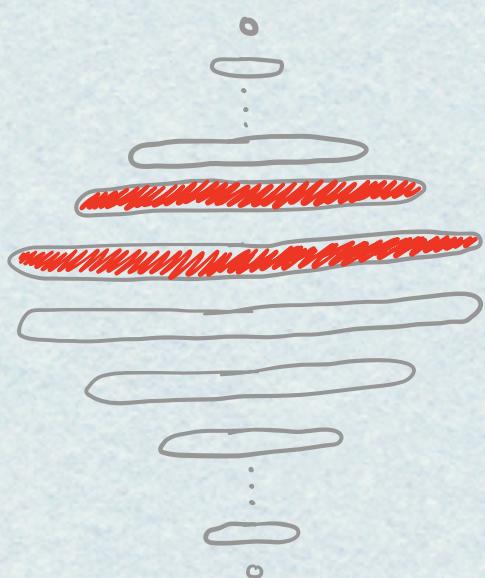
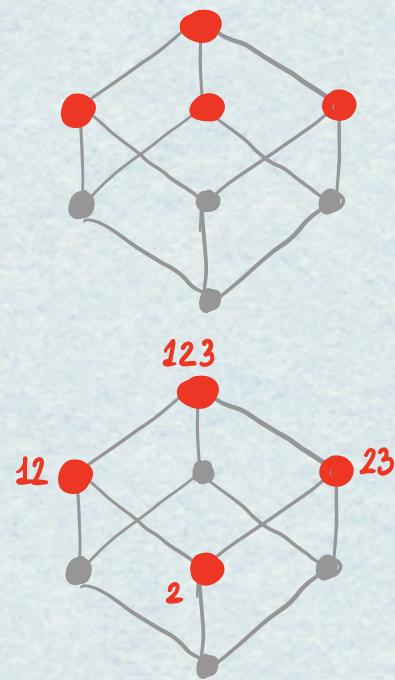
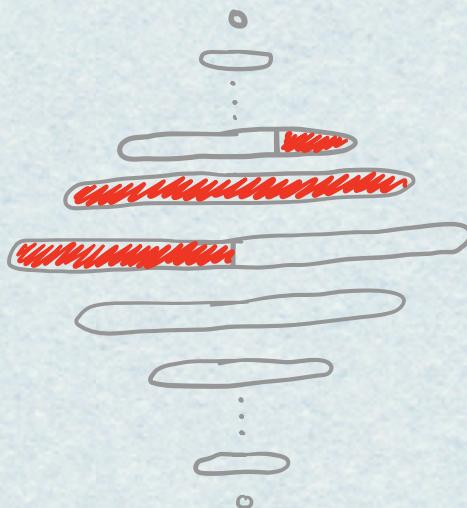
$$\begin{aligned}
 2 &\geq \mathbb{E}_{\mathcal{C}}[|\mathcal{C} \cap \mathcal{F}|] \\
 &= \sum_{i=0}^n \frac{|\mathcal{F}_i|}{\binom{n}{i}} \\
 &\geq \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{1}{\binom{2k-1}{k+1}} \sum_{\substack{0 \leq i \leq n \\ i \neq k-1, k}} |\mathcal{F}_i| \\
 &= \frac{|\mathcal{F}_{k-1}| + |\mathcal{F}_k|}{\binom{2k-1}{k}} + \frac{|\mathcal{F}| - (|\mathcal{F}_{k-1}| + |\mathcal{F}_k|)}{\binom{2k-1}{k+1}}
 \end{aligned}$$

After rearranging: $|\mathcal{F}| \leq 2 \binom{2k-1}{k} + (|\mathcal{F}_{k-1}| + |\mathcal{F}_k|) \left(1 - \frac{\binom{2k-1}{k+1}}{\binom{2k-1}{k}}\right)$

As \mathcal{F} is intersecting, $|\mathcal{F}_{k-1}| + |\mathcal{F}_k| \leq \binom{2k-1}{k}$. The result follows. \square



Thank you for your attention!



2